Within-colony feeding selectivity by a corallivorous reef fish: foraging to maximize reward?
نویسندگان
چکیده
Foraging theory predicts that individuals should choose a prey that maximizes energy rewards relative to the energy expended to access, capture, and consume the prey. However, the relative roles of differences in the nutritive value of foods and costs associated with differences in prey accessibility are not always clear. Coral-feeding fishes are known to be highly selective feeders on particular coral genera or species and even different parts of individual coral colonies. The absence of strong correlations between the nutritional value of corals and prey preferences suggests other factors such as polyp accessibility may be important. Here, we investigated within-colony feeding selectivity by the corallivorous filefish, Oxymonacanthus longirostris, and if prey accessibility determines foraging patterns. After confirming that this fish primarily feeds on coral polyps, we examined whether fish show a preference for different parts of a common branching coral, Acropora nobilis, both in the field and in the laboratory experiments with simulated corals. We then experimentally tested whether nonuniform patterns of feeding on preferred coral species reflect structural differences between polyps. We found that O. longirostris exhibits nonuniform patterns of foraging in the field, selectively feeding midway along branches. On simulated corals, fish replicated this pattern when food accessibility was equal along the branch. However, when food access varied, fish consistently modified their foraging behavior, preferring to feed where food was most accessible. When foraging patterns were compared with coral morphology, fish preferred larger polyps and less skeletal protection. Our results highlight that patterns of interspecific and intraspecific selectivity can reflect coral morphology, with fish preferring corals or parts of coral colonies with structural characteristics that increase prey accessibility.
منابع مشابه
Parrotfish movement patterns vary with spatiotemporal scale
Herbivorous fishes are being increasingly valued for their ecological function in coral reef systems, and consequently they have become the focus of management actions on many reefs around the world. Because many conservation actions require an understanding of the space use patterns of species of interest, there has been an increased effort in recent years to study the movement patterns and ho...
متن کاملShape learning and discrimination in reef fish.
Coral reef fish live in a complex world of colour and patterns. If they are to survive they need to be able to correctly identify the things they see (e.g. predators, prey) and act accordingly (e.g. flee, feed). This paper investigates whether discrimination is limited to ecologically relevant stimuli or is in fact more adaptable. Our work focuses on the reef damselfish Pomacentrus amboinensis....
متن کاملSocial interactions among grazing reef fish drive material flux in a coral reef ecosystem.
In human financial and social systems, exchanges of information among individuals cause speculative bubbles, behavioral cascades, and other correlated actions that profoundly influence system-level function. Exchanges of information are also widespread in ecological systems, but their effects on ecosystem-level processes are largely unknown. Herbivory is a critical ecological process in coral r...
متن کاملQuantifying patterns of fish herbivory on Palmyra Atoll (USA), an uninhabited predator-dominated central Pacific coral reef
On many coral reefs, herbivorous fish play an essential role in regulating algal growth and influencing the outcome of coral−algal competition. Working on a remote predator-dominated coral reef on Palmyra Atoll, USA, we used behavioral foraging observations to quantify the roles of common parrotfish and surgeonfish in the roving herbivore guild. We recorded species-specific bite rates on differ...
متن کاملThe Influence of Coral Reef Benthic Condition on Associated Fish Assemblages
Accumulative disturbances can erode a coral reef's resilience, often leading to replacement of scleractinian corals by macroalgae or other non-coral organisms. These degraded reef systems have been mostly described based on changes in the composition of the reef benthos, and there is little understanding of how such changes are influenced by, and in turn influence, other components of the reef ...
متن کامل